

The Certified Energy Manager (CEM®) Program for Professional Certification

Date:

Time: Exam Date: Venue: Course Code: Registration Deadline: 6, 9, 11, 13, 16, 18, 20, 23 & 25 June 2022 18:30 to 21:30 TBC ProctorU (Tentative) CEM /22/ HK 22 May, 2022

THE MARK OF AN ENERGY PROFESSIONAL

The Certified Energy Manager (CEM®) credential has become widely accepted and used as a measure of professional accomplishment within the energy management field since it's inception in 1981. It has gained industry-wide use as the standard for qualifying energy professionals in the United States and worldwide. It is recognized by the U.S. Department of Energy, the Office of Federal Energy Management Programs (FEMP), the U.S. Agency for International Development, and numerous state energy offices, major utilities, corporations and energy service companies. By attaining the status of CEM, you will be joining an elite group of over 10,000 professionals serving industry, business and government throughout the U.S. and in 77 countries. In particular, the contexts of the latest mandatory Energy Audit Guidelines in Hong Kong will be included in the course.

COMPREHENSIVE TRAINING PROGRAM FOR ENERGY MANAGERS (prep: CEM Certification)

This CEM course is the same course held in the USA. Metric units will be taught in Hong Kong instead of Imperial units in the USA. CEM certificates will be issued directly from the Association of Energy Engineers, the USA Headquarters, after passing the exam with experience and qualifications eligibility conditions. To obtain further information on the CEM program, please visit the website https://www.aeecenter.org/certification/cem-certified-energy-manager/.

Cours	e & Exam Fee:		
A1:	Ordinary Applicants:	US \$1,280.00	(HK \$10,000)
A2:	Early Bird [#] :	US \$1,220.00	(HK \$ 9,500)
A3:	Paring*:	US \$1,220.00	(HK \$ 9,500)
A4:	Early Bird + Pairing	US \$1,160.00	(HK \$ 9,000)
<u>Exam</u>	only Price:		
B1:	Re-sit exam - Full Course taken previously:	US \$ 385.00	(HK \$ 3,000)
# - 1			

Early Bird: Registered before 28 April, 2022

* Pairing: 2 candidates or more to submit at the same time

This special in-depth webinar course is ideal for professionals who seek a more detailed program of instruction covering the technical, economic and regulatory aspects of effective energy management. The program provides detailed coverage of all 26 training sections specified for energy managers in the field. It offers a comprehensive learning and problem-solving forum for those who want a broader understanding of the latest energy cost reduction techniques and strategies.

INSTRUCTORS (Proposed only and may subject to change)

EurIng. Andy Bell is a Chartered Mechanical Engineer (CEng FIMechE), Chartered Energy Engineer, and Chartered Energy Manager, CEM®. He has worked in Asia for over 30 years on railway engineering projects, including building the first Platform Screen Doors Systems globally – originally designed as energy saving systems. He currently works in Singapore as an Independent Energy and Engineering Consultant.

Dr. Harry So has more than 24 years of experience in business and green technology management. Dr. So has been involved in major consulting and business analysis projects for both the private and public sectors. In 2008, Dr. So started up green energy and building management system business in which his clients included major HK property developers, international companies and casinos in Macau. Dr So also holds adjunct academic positions at various universities in Hong Kong and involves researches in energy management with cloud solutions.

Ir Gary Chu (Macau Registered Engineer) got BSc in Electrical & Electronics Engineering from the University of Macau in 1993 and an MPhil in Electrical Engineering from the HK PolyU in 2000. About 20 years of experience in the process plant and energy technology areas. Between 2005 and 2007, he was invited by Macao SAR Government as a technical consultant responsible for developing the energy market in Macao. Now he is an independent consultant for several companies in the various engineering area. Specifically, in Mainland China, he provides an energy management consultancy service that includes energy audits, energy data analysis, baseline measurement, M&V plan, and energy efficient projects. He also achieved various professional qualifications in energy and green building areas: CEM®, CAP, CMVP®, CEA, CBCP®, BEAM Pro and LEED® Green Associate.

COURSE OUTLINE

THE NEED FOR ENERGY MANAGEMENT	ENERGY CODES AND STANDARDS	INDOOR AIR QUALITY
 Building energy cost control Utility DSM programs and deregulation: energy efficiency and peak demand reduction Commercial business energy cost control Industrial plant operation improvement Reducing energy costs Reducing environmental emissions Improving product quality Improving plant productivity 	 Building codes ASHRAE standards (62, 15, 3, 90.1) ASME, IEEE, and other standards Federal legislation: NECPA, PURPA, NGPA, CAAA, NEPA of 1992 CFC replacements: Montreal Protocol, global climate change National Energy Policy Act of 1992 ISO 50001 US DOE's SEP Program 	 Standards of care: ASHRAE Standard 62 Reasons for managing indoor air quality Acceptable air quality Ventilation rate procedure, Air quality procedure Typical air contaminants; VOCs and bioaerosols IAQ problems; CO2 measurement and control AEE Certified IAQ Professional requirements

Supporting Organizations:

Hong Kong Branch Institution of MECHANICAL ENGINEERS

	he Association of inergy Engineers Hong Kong Chapter	≥ EE 香港能源工程師學會 ¥ong Kong Association of Energy Engineers
 CONDUCTING AN ENERGY AUDIT Purpose of the energy audit Facility description and data needs Major systems in the facility Data forms for recording information Collecting the actual data Identification of preliminary energy management opportunities Energy audit reports 	 ELECTRIC RATE STRUCTURES Short history of electric rates The difference between power and energy Electric meters Components of electric rates Example rate structures Factors in controlling electric costs Electric utility incentive programs Special schedules (interruptible, TOU, real-time pricing) 	 BOILERS AND STEAM GENERATION Basics of combustion systems: excess air control Boiler efficiency improvement: blowdown management, condensate return, turbulators Combustion controls Waste heat recovery Steam traps: purpose and testing Process insulation Example of boiler improvement
 ENERGY AUDIT INSTRUMENTATION The need for instrumentation Light level meters Electric meters: voltages, current, power, energy, power factor Temperature-measuring instruments Combustion efficiency measurement Air flow and air leak measurement Thermography Ultrasonic leak detectors Data logging 	 MOTORS AND ADJUSTABLE SPEED DRIVES How motors work High-efficiency motors Examples of cost-effective motor changes Use of adjustable speed drives Example of cost-effective ASD use Improved motor belts and drives Compressed air management Adjustable speed drive alternatives: eddy current clutches, variable frequency drives, inlet and outlet vane control, etc. 	 GREEN BUILDINGS Introduction to sustainability The USGBC and the LEED rating systems for new construction (NC) and existing building (EB) Summarization of the prerequisites and credits for LEED NC Summarization of the prerequisites and credits for LEED EB EPA ENERGY STAR Program and Portfolio Manager ASHRAE Green Guide Benefits to the community, owners, and occupants
 ENERGY ACCOUNTING IN BUILDINGS AND FACILITIES Energy use index, energy cost index Where energy is used in facilities Lighting and HVAC energy use ENERGY RATE STRUCTURES 	 MANAGEMENT Peak load reduction Power factor improvement Energy management control systems Load management Harmonics and other power quality issues 	 LIFE CYCLE COSTING Concept of life cycle costing Purchase costs vs. operating costs Example analyses Government standards: FEMP FUEL SUPPLY AND FUEL SWITCHING
 Identifying types of energy used Electric rates, gas rates Oil, coal, and other rates Steam and hot water rates Factors in controlling fuel costs Utility incentive programs WASTE HEAT RECOVERY Objectives: design criteria Types and maintenance of heat exchangers Recuperators; economizers 	 HVAC SYSTEM Types of HVAC systems and new technologies The vapor-compression cycle COPs and EERs Air conditioning loads Chiller improvement example Control, thermal storage, absorption systems 	 Alternative fuel choices Technology choices: HVAC systems, boilers, heaters, industrial processes Benefits of deregulation: electric and gas ALTERNATIVE FINANCING Different financing methods Attributes of each method After-tax cash flow analysis

Supporting Organizations: ASHRAE

energy Hong Kong Branch) 能源學會(香港分會)

 BUILDING COMMISSIONING What is commissioning-including new and existing buildings? The project team: roles and responsibilities New building commissioning: project phases Retro-commissioning, re-commissioning: project phase objectives Total and whole building commissioning Testing, adjusting, and balancing-verification, system by system Summary of applicable codes, organizations, guidelines: ASHRAE, USGBC LEED, SMACNA, BCA, AEE's CBCP Certification 	 BUILDING ENERGY USE AND PERFORMANCE Fuel types and costs Energy content of fuels Energy conversion factors Building envelope Natural gas purchasing Retail wheeling of electricity Major building energy use systems 	 ECONOMIC ANALYSIS OF ALTERNATIVE INVESTMENTS Economic decision analysis Simple economic measures The time value of money Present and future values Cost and benefit analysis Rate of return Life cycle costing After tax cash flows
 HONG KONG PRACTICE (NEW) Mandatory Building Energy Codes (BEC) from the Hong Kong SAR Government Energy Audit Guidelines Most efficiency practice in Hong Kong Regulations and Limitations Carbon Auditing (CAP course) Indoor Air Quality (CIAQP course) Building Commissioning (CBCP course) 	 LIGHTING Basics of lighting and current lighting technologies New lighting technologies Economic evaluation of example lighting improvements Lighting standards EPA Green Lights program T12, T8, T5 lamps Compact fluorescents HID, sulfur lamps 	 CONTROLS AND ENERGY MANAGEMENT Night set back Optimum start/stop Enthalpy economizers Temperature resets PID controls, pneumatic controls Control characteristics BACNET and LONworks; TCP/IP; GUIs DDC
 WASTE HEAT RECOVERY Objectives: design criteria Types and maintenance of heat exchangers Recuperators; economizers INSULATION Types of insulation Heat flow calculations Economic levels of insulation Passive thermal energy Where the action is? 	 COGENERATION (CHP) What is cogeneration Types of cogeneration cycles Examples of cost-effective use of cogeneration QF and deregulation Use of waste for fuel Renewable Energy Technologies 	 MAINTENANCE Maintenance management systems Monitoring for maintenance Infrared photography for maintenance Cost of: Air, steam, gas leaks; un-insulated surfaces

Supporting Organizations: ASHRAE

CENERTY HONG KONG (Hong Kong Branch) 能源學會(香港分會)

BUSINESS ENVIRONMENT COUNCIL 商界環保協會

Examination Requirement

All CEM candidates must complete a **four-hour** written open-book exam containing 130 multiple choice questions, proctored by an approved exam administrator. Of the following seventeen (16) sections of the exam, candidates must complete a minimum of eleven, including those indicated as **Required**. Only the first 11 sections that are marked (by the student) will be scored by the exam grading system.

- 1. Energy Accounting and Economics Required
- 2. Energy Audits and Instrumentation Required
- 3. Electrical Systems
- 4. HVAC Systems
- 5. Motors and Drives
- 6. Industrial Systems
- 7. Building Envelope
- 8. Cogeneration and CHP Systems

- 9. Energy Procurement
- 10. Building Automation and Control Systems
- 11. Green Buildings, LEED & Energy Star
- 12. Thermal Energy Storage Systems
- 13. Lighting
- 14. Boiler and Steam Systems
- 15. Maintenance & Commissioning
- 16. Alternative Financing

Eligibility

The prerequisites to qualify for the certification process have been designed to take into account the possible diversity of education and practical experience an individual may have. However, each CEM candidate must meet one of the following criteria to pass the exam:

- An engineering degree and/or R.P.E. and/or P.E., with at least *three (3)* years experience in energy engineering or energy management.
- A science or business degree, with at least four (4) years or five (5) years experience respectively in energy engineering or energy management.
- A two-year **technical diploma or certificate**, with *eight* **(8)** years experience in energy engineering or energy management.
- **Ten (10)** years or more **verified experience** in energy engineering or energy management. (Note: Letters of reference and verification of employment must be submitted.) Evidence of years of experience must be submitted for CEM status application after passing the exam. Application forms will be distributed the students after the course/exam for the CEM certification.

Conditions

- 1. All candidates should email the form for registration and issue a cheque for final seat confirmation.
- 2. Every effort will keep the course date unchanged. However, all candidates will be informed well in advance should there be any change of course date due to venue booking and other reasons.
- 3. The course contents may be subject to change in accordance with the instructor(s).
- 4. The organizer reserves the right to cancel the course with insufficient candidates or other reasons. The course fee will then be refunded 100%.
- 5. All exam passed candidates will enjoy 1-year free AEE membership and a CEM certificate if he/she fulfils the above criteria.
- 6. When the course is confirmed, a workbook and materials link will be sent to the candidates to download and print out for the course and exam usage.

Supporting Organizations: ASHRAE

營運工程師學會 香港分會

< REPLY SLIP >

The Certified Energy Manager (CEM®) Program for Professional Certification

Course Code: CEM /22/ HK

Registration

Early Bird Deadline:28 April, 2022Course Deadline:22 May, 2022

(First come first served, application may early close if class size reaches 40)

To register, please complete the reply slip and email it to acefiona@gmail.com & info@ace-hkc.hk

Method of Payment, please refer to below:

Direct deposit or ATM transfer to "AEE Hong Kong Chapter Limited" HSBC Account no. 614-054229-838.

(Please write your name on the bank-in slip and then email to **Ms Fiona Lok** <u>aeefiona@gmail.com</u> & <u>info@aee-hkc.hk</u>)

If you have any queries about the registration, please do not hesitate to contact Ms Fiona Lok at **(852) 9211 2547** via Whatsapp.

Course Enquiry

Dr Leonard Chow, Hong Kong Program Manager Tel: (852) 2566 3397, <u>leonardchow@ispl.com.hk</u>

			Fee	Amount (HK\$)
	A1:	Ordinary Applicants	HK \$10,000	
Course &	A2:	Early Bird	HK \$ 9,500	
Exam Fee	A3:	Pairing	HK \$ 9,500	
	A4:	Early Bird + Pairing	HK \$ 9,000	
Re-sit exam	B1:	Re-sit exam - Full Course taken previously	HK \$ 3,000	

Name (Same as HKID Ca	ard or Passport):			(Mr/Ms/Miss)
The name will be shown	on the certificate.			
Company Name:				
Position Title:				
Company Address:				
Contact Phone: (Office)		(Mobile	.)	
Fax #:		Email Addres	s:	
Institution:		Membership N	0:	
Amount (HK\$): Your Pairing Candidate's Name:				
Supporting Organizations: ASHRAE Hong Kong Chapter	CIBSE BSOMES		BUSINESS ENVIRONMENT COUNCIL 商界環保協會	